Physics and
Machine Learning

Hideaki lida (FEFU)




Contents

e History of computer vs human on board game
* Basics of deep learning

* Application to Physics




History of computer vs
human on board games




Shogi

e Shogi=Chess-like game (Japanese Chess)

* Rule:
Moving one piece in turn, following
the rule of movement for each piece.
You win when you get £¥ or E4.

e Correspondence btw Shogi & Chess:
(Note: similar but there are differences)

49, ERF (Ohsho, Gyoku)-King
H£ 55 (Keima)-Knight
17(Kaku)-Bishop

(
A1T(
TE(Hlshi) ~Luke
SR IEIIIII!I
' Uniaueness of Shogk. BEEEEREBE

.. this feature makes Shogi complex Initial state of Shogi

\|

http://www.shogi-rule.com/{5 L o 5 o {5 v > 77 ARF L o i D 1AL E html




Go

e Go (or lgo)

* Rule:
The players put “stones” (black or white)
in turn on the vacant intersections of a board.
When stones surround the opposite stones,
they (opposite stones) are removed.
The winner is determined by counting
each player's surrounded territory
along with captured stones and komi
(points added to the score of the player
with the white stones as compensation
for playing second).
referred from Wikipedia of “Go”

* Features of Go:
The board is large (19x19 grid)
-> “game tree complexity” is so high:

Chess | 10123
Shogi 10226 https://forest.watch.impress.co.jp/img/wf/docs/1114/356/html/image1.jpg.ht

Go | 108360




History of computer vs human

e Chess

1996 & 1997 Deep Blue vs N'appu Kumosund Kacnapos

Result: 1(comp.)-3(human) & 2 draws (1996)
2-1 & 3 draws (1997)

e Shogi
2010-2017 Denno-Sen (& T k)

e 2016: ponanza* vs Takayuki Yamazaki (8XE, /\EX)

Result: 2-0
e 2017: ponanza vs Amahiko Sato (8XE, & A)

Result: 2-0

*ponanza: name of program
machine: Intel Core i7 6700 3.4GHz 4 cores




History of computer vs human

Go is distinctive: Chess & Shogi are “easier” for computers

e Shogi
Actually, computer was already enough strong in 2014
e The regulation of machine of Denno-Sen
Before 2014: cluster computer (about 700 PCs)
From 2014: laptop PC (!!))
because otherwise computer is too strong

 Go
In contrast to Chess & Shogi, before Oct. 2015,
no computer program wins professional Go player,
even with some advantages!




History of computer vs human

G O 8A e fe DeapMind e
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e Oct.2015 .
AlphaGo Fan vs B[ (Fan Hui, Europe Champion) s -

Result 5-0

e Mar.2016 . 3
AlphaGo Lee vs F{HE , é
(Lee Sedol, World Champ. for 18 times)

Result 4-1

18 (Ke Jie, strongest Go player) Google fg

said “Al can win against Z, but not against me” J“‘ e




History of computer vs human

However... .

* May2017 ' ‘{?19
AlphaGo Master vs ;& | .
Result 3-0 ===

|

*AlphaGo Master won 60 games (no loss) including
many world champions (not official & on-line play)

Recently, 138 loses against “#ft=" (Tencent)

with handicap for #f=




History of computer vs human

e AlphaGo Zero
trained by playing with itself, without referring any human games.

o After 3 days, exceeded AlphaGo Lee (after 4,900,000 games)
o After 21 days, exceeded AlphaGo Master
e After 40 days, exceeded all of the previous versions of AlphaGo
* AlphaZero
based on AlphaGo Zero (trained by self-playing)

but can play not only Go but also Chess and Shoqi.
It becomes stronger than the strongest programs of

e Chess (Stockfish) after 4 hours

e Shogi (elmo) within 24 hours

e Igo (AlphaGo Zero with 3 days training) within 24 hours.

Computer, which can play games extremely many times, does not need
the training data of human




History of computer vs human

o Key feature of AlphaGo

e neural network: explain later
e “Deep”: neural network with many layers

... fit to various regressions and optimizations with
Machine Learning




Basics of Deep Learning




Neural Network

Input layer Hidden layer  Output layer
Neural network

network composed of many units
(units: denoted by circles in the left pic.)
... mimics human brain

Deep neural network

more than 3 hidden layers
(from Wikipedia)




Perceptron

Oth layer 1st layer

A unit is made of two kinds of
transformations

1. Linear transformation

D = WO x ) (0) (0) (0) y(0)
uy = W X"+ WX+ W, X0

2. Nonlinear transformation
z" = flug)
f i activation function (nonlinear)

Sigmoid

Softsign

softplus
RelLU
etc...




Activation functions

f(x) is increasing function and non-linear
Typially they have a threshold

... mimics firing of neuron

xr
V14 22

tanh () 2 arctan (3 )

erf (41)

%gd (5)

Graphs from Wikipedia “;& &b Bk




Convolutional Neural Network
(CNN)

* Another very important network

* | believe Nikolai and/or Sergei will explain it




Supervised training

ex) 7: (R,G,B) for each pixel of a photo

fxn : If the photo is dog: fuy = (1) ‘

Vo

cat: fuy = (?) %

Supervised learning:
Optimisation wrt W by using training data (like x*fit of a function)
... in this case, photos of dogs & cats (typically, several thousands)




O ¥ =(1.0) O ¥ =(1.0)

¥ Y& =(0.1) B Y =(1.0)

BAREX(NY 7O = (0,1)




Loss function

Data set of the training: (X ), 7(1))

[ : numbering of pictures X : data of I-th picture Y : answers of I-th picture

What is a criterion of optimisation?
.. minimisation of loss function L(fyy) (™2 of fit)

mean square (regression) L( fNN) = Z( o)

(N2
NN1 =)

cross entropy (class identification)  L(fyy) = Z yPlog f 15111)\1 ;
il

(in this case f_i should be in [0,1])




Optimization of parameters

How to optimize Wék) ?

Update the parameters by

WEAD = WD 4 AWED - AW = —y -
i ij ij y ang,k)
WE= k)
W§k;t) : Wg‘) at t-th updation

... update in the direction of -grad

There are some variants of the “gradient” method:
SGD, Momentum SGD, AdaGrad, RMSprop, AdaDelta, Adam...




oL (from the Textbook of Machine Learning by M.Taki)

How to calculate ?
OWP
0L L(Wl,...,VVZ_|_€,...,WD)_L(Wl,...’VVl’...,WD)
ow, €

(I : 1dim. index of k,i,j, D : total number of the combination of 1, j, k)

Too much calculation cost! (~D-times forwarding needed)

. oL oL ou® oL
1. devide into two parts: = el 7*=D = 5k, (k=D
OW&®  gu® oWk gy
(u® = whzk=1 -0 =f(u(k)))

zK can be calculated with 1 forwarding process. How about 67?

aL a (k+1)
2. calculate 5 backward: 6% = . = 5(k+1)W(k+1)f/(u(k))

k k
ou®  ou® (f’: derivative of activation function)

Calc. cost of backward process is the same as that of 1 forwarding!

D @ Q) L D D (@) (D)

S« 5@ — ... « 5D




Application to Physics




Application to physics
... especially related to phase transition

& finite density system

Akihiro Tanaka & A.Tomiya
“Detection of Phase Transition
via Convolutional Neural Networks”

Kai Zhou,Gergely Endrédi and Long-Gang Pang
“Regressive and generative neural networks for scalar field theory”

Yuto Mori, Kouji Kashiwa and Akira Ohnishi
“Application of a neural network to the sign problem
via the path optimization method”

Y.Fujimoto, K,Fukushima and K.Murase
“Methodology study of machine learning for the neutron star equation
of state”




A.Tanaka and A.Tomiya

“Detection of Phase Transition
via Convolutional Neural Networks”

J. Phys. Soc. Jpn. 86, 063001 (2017)




Phase transition of 2d Ising model with ML

... 2" ordr phase transition exists
A.Tanaka and A.Tomiya, Journal of the Physical Society of Japan 86 (6), 063001, 2017. 41, 2017.

o (F.W) T
Structure of neural network CNR ; \\
[T — {{U:L--y} Ising config on L x L lattico.} ] °:°. {,,,}
COHVOlutlon[A":‘fz-ﬁlt.er. (.sj.,s)-stride, C-channels| Mon;e C;,.;
1 ReLU or ELU activation ' 3
Flatten (1) | I(] \.l -
RLQ/.ssz‘ )
@0 f
! Fully connected / N
Softmax e I Next ster]
LRV =0 | F.W update

F% in convolution, W™ in fully connected layer.
i I \ )

o L2/ 2 O FIG. 2: Whole picture of our model. The data ({a‘,.,,,,},ﬁ) €
=1L 5 ’ Tr for (§) is picked randomly in each step of SGD (|A5).




{({Ow)} )

Input and training data

Bn

Loss function

( (1,0,...

| ) (0,1,.
— = Tin + 71(5} , CIn:B—=8=1¢ ...

n=0,...,(Neont—1) (0,0,...,

L (0,0,...

,0,0) for
..,0,0) for

1,0) for
,0,1) for

E(GNN, B) = Z Brlog BENN minimized

3<0
Bel0,+v=)

B e [F=3,1)




2d Plot of Weight W (flatten feature map):
Without CNN: one hidden layer

100 1terations 10.000 1terations

Weight W

I: Corresp. to Temperature

No feature of phase transition
(I personally heard that many layers shows feature of phase trans. WITHOUT CNN)




Weight W

Filter F

.|

Case (A) "L

Case (B)

Using CNN: 5 filter case (C=5)

\

Shows feature of phase transition!

0.6
04
0.2

-~

Using CNN: one filter case (C=1)

‘\

The filter has a function of
“real space renormalization transformation”,
which gives average of spin = magnetization

m " a
o (A) mm
N G M
60 !
(A) N |
50 g .
aof " (B)
. 4'...02; B)
20 *4
d B) \
10 : \ l
0.2 ‘v‘:l 0




“Order parameter” in neural network

Waum(B) =) W eIy (B), Srediced by ML

17 2\ . Q2 B ...Motivated by Ising model
Wesum (8) = atanh(c(8 — Bonn)) — b, n mean field approx.

i =32 .
Wi Be = ﬁ451887

********

W, ., is well fit by W, |

=>W,, ., can be regarded as
order parameter!

FIG. 7: Waum(8) for L = 32. The horizontal axis is the
inverse temperature $ which is translated using ().




Kai Zhou,Gergely Endrédi and Long-Gang Pang

“Regressive and generative neural networks
for scalar field theory”

arXiv:1810.12879 [hep-lat]




Dual description of scalar field theory at finite density

L 1/T
-Original action: J dle dx,[(D,h)*(D,gp) + m*¢p*p + )] D,=0,+iud,,
0] 0]

-Dual description: 7 — Z exp(—=S2[k, I]) = 2 1 Z5!(x)
{k,l} {k,l}

ZM(x) = e" " OWs(k, I;x)16[ V - k()T Ak (x), L(x)]

(0]

Wls] = J drrsHlg=@m=ir
0

st Ix) = ) LT, + 1k, (x = D) + 2(,(x) + L,(x — D))

V() = ) k() — k,(x = )]
’ 1
(L) + [k, () D 1,(x)!

Alk,(x), 1,(x)] =

... this expression is real, no sign factor




Purpose of the study

* Detect phases of complex scalar field theory at finite
temperature and density by using Deep Learning
from bare configurations

* Predict the various observables using DL from bare
configurations




Distribution of probability of condensation P

0.8
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FIG. 3. The network predicted condensation probability P as a function of the chemical potential (left), the particle number
density (middle) and the squared field (right). The dashed vertical line indicates the threshold chemical potential p,. Each
point in the plot represents one configuration. As pointed out in Sec. II, n only assumes values that are integer multiples of
0.1, visible in the middle panel.




Probability of condensation from ML
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-They investigated the correlations btw observables & k. k,,[;, ],




Generator of configurations

Monte-Carlo
GAN

Discriminator P
D(x) ’

Probability Density

EM-distance

—

Monte-Carlo
GAN

Generative Adversarial Network (GAN)
input : noise z
output: configurations

Probability Density

Competition between generator
and discriminator

-> generator makes high quality fake data Not only average, but also distribution

are well reproduced




Y.Mori, K.Kashiwa and A.Ohnishi

“Application of a neural network to the sign problem
via the path optimization method”

Prog. Theor. Exp. Phys. 2018, 023B04




* Lefschetz Thimble method... a method to circumvent sign problem
Find a complex path on which imaginary part of integrand does not oscillate

d 0S[Z]
—7. =
dt ' 07
T co: aSEZ] = () .« . ja, %0
aZi =7 T
Thimbles

steepest descent (stable)
& ascent path (unstable)




ex) Airy function

d 3
Ai(a)=J —xexpi x—+ax =
R 2T 3

‘I‘n‘teg‘rand on R

Thimble

0r:19’(lna| Integrand on thlmble J
contour | --NO oscillation
2 thimbles

Yuya Tanizaki
XQCD 2016




Purpose of the study

* Find “thimble” by using Machine Learning with feed-

foward neural network
path omtimization method

e examine the usefulness of the method in
2D complex 4¢* theory at finite chemical potetial
...where sign problem exists




Try to find the complexified path z(r) which minimize the following loss function & (z(¢))
(=cost function in their paper)

F = l Jd"tl 00 _ o1t |2 X | J(£)e=SED|
2

= [d”t|](t)e_5(z(t))| _ ‘ [dnj(t)e—S(z(t))

|

J(t) = det(dz;/ot) :Jacobian 7 = Jdnt J(1)e=SC0,

— 17
- 12|«

0(t) = arg(J(H)e ) g, = arg(Z),

[dOCO) [ JWe | (0 )y
[dre| J(He—S@ | 0= (e)pq

(pq...phase quenched: (0),, = )




Parametrization of path

z() =t +i(a;f(r) + )




Fig.2. The top left and top right panels show the real part of the average phase factor without and with the
optimization as a function of . The bottom panel shows the imaginary part of the average phase factor with
the optimization. Circles, squares, and crosses are results for L = 4, 6, and 8, respectively.




Re <n>
Im <n>

Fig. 3. The expectation value of the number density in the Monte Carlo calculations (solid lines with symbols)
and in the mean field approximation (dashed line). The shaded area shows the expectation value without the
path optimization method at L = 8.




Y.Fujimoto, K,Fukushima and K.Murase

“Methodology study of machine learning for the neutron
star equation of state”

Phys. Rev. D98, 023019 (2018)




Neutron star

- Radius about 10km
- Mass roughly 1 solar mass (1.4-2.0(?

- Recently gravitational wave
from collision of two neutron stars is observed

Journal, vol, page, DO

PHYSICAL REVIEW LETTERS

Highlights ~ Recent  Accepted  Collections  Authors  Referees  Search  Press

GW170817: Observation of Gravitational Waves from a
Binary Neutron Star Inspiral

tion)

On August 17, 7 at 12:41:04 UTC the Advanced LIGO and Advanced Virgo
gravitational- e detectors made their first observation of a binary neutron star inspiral.
The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a
false-alarm-rate estimate of less than one per 8.0 x 10" y We infer the component
masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of

known neutron stars. Restricting the component spins to the range inferred in binary
neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the
total mass of the system 2 . The source was localized within a sky region of

; Mpc, the closest and

1

most precisely localized gravitational-wave signal yet. The association with the y-ray

28deg” (90% probability) and had a luminosity distance of 40




(A185)

Size

of neutron star

L270
DSIFXAND
Roanueo’ [OK

T —% 92019 Google

3l
,
—
;
=
[}
om
om
[ A188
[A188 |
Haxoaka
®
+
Q7  HEHRY

Z4—R/Ty 7035/  10km




Purpose of the study

e Discuss a methodology to construct Equation of State
(EoS) with neural network from observational data,
the relation of M-R (mass-radius relation of NS)

e Bayesian analysis is one of the effective methodology
based on a certain prior distribution of E0S
... have to investigate dependence of prior distribution

e This study is a complementary to Bayesian analysis




Feed Forward Neural Network

NI

“14; NSETY @) oo
,, K “/“» '\\‘ @ e
1

1}
AN
) A“"'.L ®

S
VN W/

[Input] [Output]
“Observational” data NN Sound velocity
dp;
(M i Rl‘) Cs2,i = d_p~
(i=1-15) (p, p) relation is fixed

— EoS is determined




Making input data

 Making EoS:
e [0, po] : conventional nuclear EoS
. [Po 8pa] :
e equally partitioned into 5 segments in logarithmic scale
e randomly assign cs to the five segments according to
the uniform distribution 0.02<cs<0.98
* determine pressure p at the segment boundary
* interpolation is performed assuming p « p'

e Solve Tolman-Oppenheimer-Volkov equation (TOV eq.)

P _ _Gm (P N( 4P\ /[ _2Gm -
dr 12 P pc? mc? rc?

dm 2 = - =
= dzr<p (M,R) relation is obtained
r

e Adding errorbars (normal distribution)
e Loss function is defined by

N, c2. 2
L _ S,1
[ /] <§( fNNz({ 7 J})> >
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FIG. 3. Two examples of the randomly generated EoSs
(dashed lines) and the machine learning outputs (solid lines)
reconstructed from one observation of 15 M-R points [see Fig. 4
for actual (M;, R;)].




R [km]

FIG. 4. Randomly sampled 15 data points and the M-R
relations with the reconstructed EoS (solid lines) and the original
EoS (dashed lines). The red and blue colors correspond to two
EoSs shown with the same color in Fig. 3.

TABLE II. Root mean square of radius deviations for fixed
masses.

Mass (M) 0.6 0.8 1.0 1.2 1.4 1.6 1.8
RMS (km) 0.16 0.12 0.10 0.099 0.11 0.11 0.12




Activity of our group on
Machine Learning

e Sine-Gordon model in 1+1dim.
1 1
S[¢] = — szx {E[aﬂcb(x)]z — gcos ¢<x>}

Sine-Gordon system has Berezinskii-Kosterlitz-Thouless phase transition
... thermodynamic quantities are smooth, but the correlation function
has power damping under the phase transition temperature

cf) XY model in 2d does NOT have the phase of long-range order due to strong fluctuation in low dimension
(Mermin-Wagner theorem)

Roughening transition in lattice Sine-Gordon model

Z = {2»exp<—§‘ﬁ(n(r) — n(r—u))2> ()

n(r

... describing “roughness” of surface of crystal

* this is a dual theory of XY model
(B & J are the parameters of

inverse temperature & coupling in XY model)

* In rarefied gas limit, (! becomes Sine-Gordon model

= Roughening transition is related to BKT transition

{5 MyShared




Phase of roughening transition:

1 ) I o ,
S[o] = p fd'.\' {Elﬁ,mb(x)l' — g Cos d)(.\')}

y=g/2t

Hypothetical phase structure

surface thickness:

> (o(x) = o(y)*)

T,y

1
= 173

rough

5 LIn L + const., >t
o- >~ 7
const. t<t,




cx) Inference of g (t=5) from bare configurations
- g=2.5, 5, 10, 20, 40, 80, 160, Nt x Nx=40 x 40

* Network: CNN & 2 layers, regression

values Of g "pred_regression_g_t5.0000 dat"

numbering of test data

1000

* Good agreement
* What is the feature to infer the values of g?

Can we extract “order parameter” of SG system?
cf) Tanaka & Tomiya ... made o.p. from parameters of NN




Activity of our group on
Machine Learning

e SU(2) Yang-Mills...talk by N.Gerasimenyuk

e Speed Radar (Speed Gun) on smartphone
...talk by S.Lyubimov

Enjoy their talks!
Thank you for your attention!




