Lee-Yang zeros from canonical approach in the NJL model

Masayuki Wakayama

RCNP, Osaka University

HaRP workshop "Hadrons and dense matter from QCD" @ FEFU (2019.1.28)

<u>Contents</u>

- **1. Introduction** Motivation, Sign problem
- **2. Canonical approach and Lee-Yang zeros** Basic idea, History, Outline of the strategy
- 3. Results of Lee-Yang zeros in lattice QCD
- 4. Results of Lee-Yang zeros in NJL model volume dependence, fitting dependence, maximal number density dependence, extrapolation
- 5. Summary & Future work

QCD Phase diagram (Prediction)

T (Temperature)

Where are the critical point and the phase transition lines?

Predicted critical points

Where are the critical point and the phase transition lines? Lattice QCD at finite density: Existence of the sign problem

Sign Problem

S_G : Gauge action $D(\mu_q)$: Fermion matrix N_f : # of flavors

Monte Carlo Method

(importance sampling)

 $\langle \mathcal{O} \rangle_{\mu_q} = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}[U_i]$ with Probability: $[\det D(\mu_q)]^{N_f} e^{-S_G}$

_			
	Chemical potential	$\det D(\mu_q)$	Monte Carlo Method
	$\mu_q = 0$	Real value	0
	$\mu_q \neq 0$	Complex value	🗙 (Sign Problem)
Pure Imag.	$\mu_q = i\mu_{qI}$	Real value	0

$$D(\mu_q) = D_{\nu} \gamma_{\nu} + m + \mu_q \gamma_0$$

$$D(\mu_q)^{\dagger} = -D_{\nu} \gamma_{\nu} + m + \mu_q^* \gamma_0 = \gamma_5 D(-\mu_q^*) \gamma_5$$

$$\det D(\mu_q)^* = \det \left[D(\mu_q)^{\dagger} \right] = \det \left[\gamma_5 D(-\mu_q^*) \gamma_5 \right] = \det D(-\mu_q^*)$$

<u>Contents</u>

- **1. Introduction** Motivation, Sign problem
- **2. Canonical method and Lee-Yang zeros** Basic idea, History, Outline of the strategy
- 3. Results of Lee-Yang zeros in lattice QCD
- 4. Results of Lee-Yang zeros in NJL model volume dependence, fitting dependence, maximal number density dependence, extrapolation
- 5. Summary & Future work

Canonical Approach

Fugacity expansion

Grand Canonical partition function

$$\underline{Z_{\text{GC}}(\mu_q, T, V)} = \operatorname{Tr} \left(e^{-(\hat{H} - \mu_q \hat{N})/T} \right) \\
= \sum_n \langle n | e^{-(\hat{H} - \mu_q \hat{N})/T} | n \rangle \\
= \sum_n \langle n | e^{-\hat{H}/T} | n \rangle e^{n\mu_q/T} \\
= \sum_n \underline{Z(n, T, V)} \xi^n \quad \text{Fugacity: } \xi = e^{\mu_q/T} \\
\mathbf{Ganonical partition function}$$

Canonical Approach

Fugacity expansion

<u>History</u>

Basic Idea of Canonical Approach

 \bigcirc N_{digit}=0016

 \times N_{digit}=5000

100 150 200 250 300 350 400 450 500

n

A. Hasenfrantz, D. Toussaint, Nucl. Phys. B371 (1992)

X Numerical instability of (discrete) Fourier transformation

Sign Problem $? \Rightarrow$ No, this is caused by cancelation

of significant digits !

R.Fukuda, A.Nakamura, S.Oka, PRD93 (2016)

In double-precision arithmetic, cancelation of significant digits occurs at high n region.

In multiple-precision arithmetic, we can evaluate Zn up to high n region with accuracy.

β**=1.80** T/T_c=0.93

 10^{-50}

 10^{-100}

 10^{-150}

 10^{-200}

 10^{-250}

Nn

Outline of the strategy

If we get Z_n for all n, we can search at ANY density!

Outline of the strategy

In numerical calculations, n is finite.

Zeros of Z_{GC} so-called Lee-Yang Zeros contain a valuable information on the phase transitions of a system.

T.D. Lee & C.N. Yang, Phys. Rev. 87, 404&410 (1952)

$$Z_{\rm GC}(\mu_q, T, V) = \sum_{n=-N_{\rm max}}^{N_{\rm max}} Z(n, T, V) \xi^n = 0$$

There are $2N_{max}$ LYZs in the complex $\xi = e^{\mu_q/T}$ plane.

Zeros of Z_{GC} so-called Lee-Yang Zeros contain a valuable information on the phase transitions of a system.

Zeros of Z_{GC} so-called Lee-Yang Zeros contain a valuable information on the phase transitions of a system.

Zeros of Z_{GC} so-called Lee-Yang Zeros contain a valuable information on the phase transitions of a system.

Zeros of Z_{GC} so-called Lee-Yang Zeros contain a valuable information on the phase transitions of a system.

Outline of strategy

<u>Contents</u>

- **1. Introduction** Motivation, Sign problem
- **2. Canonical approach and Lee-Yang zeros** Basic idea, History, Outline of the strategy
- 3. Results of Lee-Yang zeros in lattice QCD
- 4. Results of Lee-Yang zeros in NJL model volume dependence, fitting dependence, maximal number density dependence, extrapolation
- 5. Summary & Future work

QCD Phase diagram (Prediction)

M. Stephanov, PoS(Lattice2006), 024

We can roughly estimate the phase transition points from lattice QCD. But Is an extrapolation good? Are V and N_{max} large enough? Is the number density approximation fine?

Outline of the strategy

<u>Contents</u>

- **1. Introduction** Motivation, Sign problem
- **2. Canonical approach and Lee-Yang zeros** Basic idea, History, Outline of the strategy
- 3. Results of Lee-Yang zeros in lattice QCD
- 4. Results of Lee-Yang zeros in NJL model volume dependence, fitting dependence, maximal number density dependence, extrapolation
- 5. Summary & Future work

Susceptibility in the NJL model

29/40

almost the same as one for $VT^3=4^3$.

We can evaluate the exact n_B under the phase transition density from the canonical approach.

N_{max} dependence of n_{B} at T < T_{cp}

We can evaluate the exact n_B under the phase transition density from the canonical approach.

M. Wakayama

33/40

<u>N_{max} dependence of n_B at T > T_{cp}</u>

We can evaluate the exact n_B under the crossover density from the canonical approach.

This extrapolation works well to obtain the phase transition points.

We have succeeded in subtracting a term associated with finite degree effect from the fitted function. The resulting curve represented the dotted curve nicely reproduces the expected critical point (CP) in the NJL model.

This extrapolation procedure works well to obtain the expected phase transition points (PTP).

Our results are different from the pseudo phase transition points (PPTP), which is consistent with lack of phase transition points at the real chemical potential.

<u>Summary</u>

- We studied Lee-Yang zeros for Z_n obtained from the canonical approach in lattice QCD and the NJL model.
- The phase transition points can be roughly estimated from lattice QCD.
- We checked V, N_{sin}, N_{max} dependences in the NJL model.
 VT³ ≥ 2³ (L ≥ 8 [fm])
 - $N_{sin} \ge 2 (f_2/f_1 = 4.9 \times 10^{-4})$
- We can evaluate the exact n_B under the phase transition density from the canonical approach.

• We found the reasonable extrapolation procedure of the edge of LYZs at T $\leq T_{cp}$ in the NJL model.

Future work

Other Examples:

- Polyakov-loop-extended NJL model
 - -- It has the Roberge-Weiss symmetry.
- SU(2)-color lattice
 - -- It does not have the sign problem.

Calculate SU(3)-color lattice with these parameters and determine the QCD phase!